
I-CANOPY: A SOFTWARE PLATFORM FOR IOT SENSOR
INTEGRATION

Sheng(Jerry) Wang a,b Grayson Lottesa Spencer Holman a George Venzkea

aElectrical Computer Engineering, The University of Iowa, Iowa City, IA, USA bIowa Technology Institute (ITI), The University of Iowa, Iowa
City, IA, USA

Introduction and Hypothesis

Figure 1. I-Canopy sensor on a local farm

In our previous projects, we developed air and soil sen-

sors(shown in Fig. 1) aimed at citizen scientists and large-scale

agricultural users, successfully deploying over 300 sensors across

the U.S. in the past five years. However, we discovered through

user feedback that key processes—such as ordering, sensor regis-

tration, and data access—required navigating websites, emails, or

verbal instructions, often leading to long learning curves and com-

munication challenges. To address these issues, we envisioned an

integrated mobile platform that offers users an all-in-one solution,

streamlining the journey from product browsing to real-time data

monitoring.

Figure 2. I-Canopy Sensor Data Processing Architecture

While we had already designed a complete IoT infrastructure

(see Fig. 2), the individual features were fragmented and difficult

for non-technical users to adopt. We hypothesize that developing

an integrated mobile and desktop platform will significantly lower

the learning barrier, improve communication efficiency, and en-

hance user satisfaction and engagement with IoT sensor data. By

combining continuous user feedback with iterative software im-

provements, we aim to deliver a solution that meets both techni-

cal and user experience needs.

Process and Feature

We followed an agile process with iterative sprints and contin-

uous user feedback. Early sprints refined Figma prototypes and

delivered a stable, minimal interface; later sprints improved visu-

als and animations for consistency (Fig. 3). We focused on an

intuitive UI with loading skeletons and clear feedback to simplify

interactions and reduce the learning curve.

Figure 3. Figma prototype vs final application

Fig. 4 shows the tech stack used for the development, and Fig.

9 shows the entire system architecture for the mobile application.

Process and Feature

Initially, fetching 30-day sensor data via third-party APIs was

slow and placed heavy load on the database. We introduced a

Redis database to share the memory across all EC2 servers and

a dedicated EC2 server running only Celery tasks (Fig. 5). This

reduced database stress and boosted data retrieval speed by 5×

(from 3.5s to 0.7s). Fig. 6 shows the time comparison for the

entire data transfer.

Tech Stack

Figure 4. Tech stack used for the development

Data Caching and Aggregation

Figure 5. Caching Architecture

Figure 6. Total time taken for

different caching strategies

Querying multi-year historical data was inefficient due to a

large unoptimized table. We redesigned the system using

Celery to update a pre-aggregated summary table in O(1) time

during data ingestion. This reduced data size by 400× and

improved query performance without compromising the

charting detail, as visualized in Fig. 7.

Figure 7. Aggregation workflow

Continuous Integration/Deployment

Over four months of development, we used continuous inte-

gration and deployment (CI/CD)with GitHubActions to test ev-

ery pull request on both the React Native frontend and Django

backend. We maintained a dedicated deployment branch,

which automatically pushed builds to TestFlight. As a result,

syncing branches and updating the app on our devices became

a seamless, 30-minute process. The entire system architecture

is shown in Fig. 9.

External Tools and APIs

Stripe API — secure payment processing and default card

support.

Google Places API — real-time address autocomplete.

Smarty — validated and geocoded shipping addresses.

Coding Standards

We adopted consistent coding conventions across the React

Native frontend and Django backend. Testing was enforced us-

ing Jest for frontend components and django-pytest for back-

end views and models.

Fig 8 shows a sample code coverage summary, which we

used to help monitor our test completeness and identify

untested paths.

Figure 8. Sample code coverage report

Conclusion

This project sharpened our user-centered problem solving and

continuous software refinement skills, as we practiced agile team-

work and self-learned new technologies throughout development.

Figure 9. System architecture

https://github.com/uiowaSEP2025/sep2025-project-team004 I-CANOPY: A SOFTWARE PLATFORM FOR IOT SENSOR INTEGRATION SEP 2025

https://github.com
mailto:youremail

